Goals

- Improve diagnosis and screening in cardiac disease from non-invasive electrical measurements and Cardiac Electrical Imaging (CEI)
- Connect to CenSSIS Electrical Impedance Tomography group at RPI to provide new methodologies for complete, relatively cheap, cardiac electrical imaging systems
- Collaborate with NIH/NCRR Center at University of Utah on software for Cardiac Electrical Imaging
- Develop efficient, robust, distributed optimization algorithms for inverse solutions, specialized to application

Significance

- Body surface electrocardiograms provide very limited information; more useful would be signals at the heart surface by solving inverse problem
- Diagnosis and screening of cardiac disease still surprisingly inaccurate or expensive and risky. Success of treatment depends on accuracy of diagnosis. CEI could provide cheap, fast, much more accurate tools.
- Development of algorithms for CEI can be applied across application areas, eg to Diffuse Optical Tomography.

Technical Approach

- GOAL: Estimate heart surface electrical activity from body surface measurements and assumed geometry and conductivity map.
- COMPONENTS:
 - Source Model
 - Geometric/Conductivity Model Forward Solution
 - Inverse Algorithm
- CHALLENGE: Inverse Problem Ill-Posed Needs a priori constraints
- OUR APPROACH: USE MULTIPLE CONSTRAINTS
 - No constraint sufficient or even optimal
 - Traditional constraints: 2 norm of solution or spatial derivatives
 - Other constraints
 - Temporal Constraints
 - Max norm constraints
 - 1 norm of gradient constraints
 - Frequency domain constraints
- ADMISSIBLE SOLUTION APPROACH
Ellipsoid Algorithm

Relation to ERC
- Robust Inverse Algorithms: typical subsurface requirements or robustness to model error and measurement noise
- Computationally Efficient Implementations: Use of CenSSISS Biomedical Distributed Computational Platform
- Electrical Impedance Tomography (EIT): proposed joint research effort
 - Output of EIT is conductivity map
 - Input of CEI is conductivity map
 - Current efforts require expensive imaging and time-consuming segmentation
 - Research problems are both experimental and algorithmic
 - Experimental: electrode design, etc., See EIT poster
 - Algorithmic: how to include uncertainties of EIT conductivities into CEI to improve robustness and accuracy

Other Connections
- Long-established collaboration with Cardiovascular Research and Training Institute, University of Utah
 - Sharing of expertise, algorithms, data
 - Provides key expertise to investigate EIT + CEI systems
- PI is investigator in new NIH-Funded NCRR Center for Bioelectric Field Simulation, Visualization, and Modeling at University of Utah (http://www.sci.utah.edu/ncrr)
 - Useful connections for application into new fields, software development, computational imaging

Current Status
- On-going collaboration with CVRTI and NCRR Center, includes funding at NU from NIH/NCRR Center grant
- Work includes algorithm development and software development to integrate algorithms into NCRR Problem Solving Environment, BioPSE

Plans and Project Evolution
- In Year 1:
 - Continue development and expansion of current optimization approach and distributed system implementation
 - Pursue joint effort with RPI EIT group and Utah CVRTI/NCRR group
- By Year 3:
 - Full integration of CenSISS supported CEI algorithms into Utah BioPSE software
 - Working experimental system for combined EIT/CEI testing
- Long-Term Vision: relatively cheap and portable, accurate, robust cardiac diagnostic and screening tool

PI Contact Information
Dana H. Brooks, Associate Professor
ECE Dept, 442 DA, Northeastern University
360 Huntington Ave, Boston, MA 02115
Tel: 617 373 2368, FAX: 617 373 4189, Email: brooks@ece.neu.edu