Fourier-Based Image Registration Techniques

Harold S. Stone, NEC Research
Collaborators

Ee-Chien Chang
Mike Orchard
Stephen Martucci
Morgan McGuire
Soon ae Chun
Rob Wolpov
Jacqueline Le Moigne
...

1/14/2002 HSS 2
Main Results

• Fast normalized correlation for translations
• High precision phase-correlation for rotation
• Reduced effects of occlusions from clouds
The Goals

• High speed, 10 to 50 ops per pixel
• Improved precision
 – High precision rotation discovery
 – Removes occluded pixels (translation only)
Problem Statement
The Problem

Physical Scene

Image 1

Image 2
Example: Zurich (Landsat)

2/8/90

7/8/92
What has changed?

- Register images (in 2D or 3D)
- Eliminate lighting effects
- Find differences
- Explain differences
 - Clouds
 - Crop cover
 - Catastrophic causes
Fourier-Based Normalized Correlation
Correlations

Define the *correlation* of \(x \) and \(y \), denoted as \((x \cdot y) \) to be:

\[
(x \cdot y)_j = \sum_{i=0}^{i=N-1} x_i y_{(i+j) \mod N}
\]

Let \(X, Y \) be FFTs of \(x \) and \(y \).

\[
(x \cdot y)_j = \left(\frac{1}{N} \right) \sum_r X_r Y_r W_{jr}
\]

where \(\bar{X} \) denotes complex conjugate of \(X \).
Correlation Computation

\[\rho(x, y) = \frac{\sum x_i y_i - \left(\frac{1}{N} \right) \sum x_i \sum y_i}{\sqrt{\left(\sum x_i^2 - \left(\frac{1}{N} \right) \left(\sum x_i \right)^2 \right) \left(\sum y_i^2 - \left(\frac{1}{N} \right) \left(\sum y_i \right)^2 \right)}} \]

\[= \frac{\sigma_{xy}}{\sigma_x \sigma_y} \]
CORRELATION COEFFICIENT

\[\rho(x, y) = \frac{x \cdot y - \left(\frac{1}{h \cdot m} \right)(x \cdot m)(h \cdot y)}{\sqrt{\left(x^2 \cdot m \right) - \left(\frac{1}{h \cdot m} \right)(x \cdot m)^2} \left(h \cdot y^2 \right) - \left(\frac{1}{h \cdot m} \right)(h \cdot x)^2} \]

where \(m \) is a mask for \(y \) and \(h \) is a mask for \(x \)
Other Criteria

• Intensity differences
• Unnormalized correlations
• Sum of squares of differences
SPEED UP

512 x 1024, template = 217 x 231, $6.4 \cdot 10^{11}$ ops

<table>
<thead>
<tr>
<th>Resolution</th>
<th>Pixel</th>
<th>FFT</th>
<th>FFT/Pixel</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>417</td>
<td>417</td>
</tr>
<tr>
<td>1/4</td>
<td>16</td>
<td>1815</td>
<td>113</td>
</tr>
<tr>
<td>1/16</td>
<td>254</td>
<td>7921</td>
<td>31</td>
</tr>
<tr>
<td>1/64</td>
<td>3934</td>
<td>34483</td>
<td>9</td>
</tr>
</tbody>
</table>

256 x 256, template = 64 x 64, $8.2 \cdot 10^9$ ops

<table>
<thead>
<tr>
<th>Resolution</th>
<th>Pixel</th>
<th>FFT</th>
<th>FFT/Pixel</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td>1/4</td>
<td>16</td>
<td>218</td>
<td>14</td>
</tr>
<tr>
<td>1/16</td>
<td>263</td>
<td>960</td>
<td>4</td>
</tr>
<tr>
<td>1/64</td>
<td>4460</td>
<td>4247</td>
<td>1</td>
</tr>
</tbody>
</table>
Accurate Rotation
Fast Rotation finding

- Theorem: The rotation of the Fourier transform of $f(x)$ is equal to the Fourier transform of the rotation of $f(x)$.

$$FRx = RFx$$

where F is Fourier transform and R is rotation.
Practical Use

Let $f(x) = g(Rx-x_0)$

$$F(\omega) = G(R\omega)e^{-j2\pi\omega x_0}$$

$$|F(\omega)| = |G(R\omega)|$$

Rotate the magnitude of the transform of $G(\omega)$ until it most like the magnitude of $F(\omega)$.
Phase correlation of $F(\omega), G(\omega)$

Let $f(\rho, \theta)$ be $|F(\omega)|$ in polar coordinates.
Phase correlate $f(\rho, \theta)$ to $g(\rho, \theta)$, vs. θ
Let F be Fourier transform of $f(\rho, \theta)$.

$$\frac{F(\rho, \theta) \hat{G}(\rho, \theta)}{|F(\rho, \theta)| |G(\rho, \theta)|} = \frac{F(\rho, \theta) \hat{F}(\rho, \theta) e^{-2j\pi\theta_0}}{|F(\rho, \theta)| |F(\rho, \theta)|} = e^{-2j\pi\theta_0}$$

Inverse transform is a delta function at θ_0
What you actually get

Why is there a false peak?
Why is height of the correct peak so small?

From Lucchese et al.
Explanation

- Fundamental problem:
 \[FR_x \neq RF_x \]
 for finite sampled images

- Rotationally dependent aliasing causes false peaks and lowers peak heights at correct locations.
Finite-Transform Pairs

\[x \quad FRx \quad RFx \]
Finite-Transform Pairs

\[x \]

\[FRx \]

\[RFx \]
The Artifacts of Aliasing
Enhanced Phase Correlation
Reducing Aliasing artifacts

- Window the image to eliminate boundary artifacts
- Remove central frequencies -- these contribute most to rotational aliasing
- Phase correlate over 180°, not over 360°
Blackman Window

Windowing reduces effects at the rectangular boundaries

Multiply the image point-by-point by the window function
Example: Images and Transforms

Raw
Windowed
HSS
Disk Only
Results: No Window

Small and Large Low-Pass Cutoffs

Low-Pass Cutoff

Correct Peaks
Results: Windowing

Small and Large Low-Pass Cutoffs

Correct Peaks S/N > 110
Higher Peak

- Phase correlation normalizes all frequency coefficients to unit length, including $F(0,0)$.
- Sum of magnitudes must equal 1.
- False peaks reduce height of correct peak.
- 360° phase correlations have two cycles, so no peak can exceed 0.50.
- Remove false peaks, and correlate over 180° to increase peak height.
Summary

• Fast normalized correlations, with occlusion masks
• Handles 10 images/second in Matlab, images of size 512 by 512
• Ideal for searching moderate to large areas
• Improved precision of fast phase correlation