ABSTRACT

Photothermal tomography is a non-invasive imaging technique that uses the generation of broadband emissions from the absorption of laser light to form an image of the subsurface. Laser-generated gold nanoparticles can be targeted to specific cell types, allowing for the formation of cavitation around the nanoparticles. The cavitation can then collapse, generating a broadband emission, which can be used to form an image of the subsurface.

MOTIVATION

The use of nanoparticles targeted photoacoustic cavitation for tissue imaging and therapy shows significant promise. However, before this can be used in-vivo applications, the following questions need to be addressed:

- What are the acoustic pressure and laser light thresholds for the generation of nanoparticle nucleated inertial cavitation?
- How reproducible are the acoustic emissions and are there are there efficacy for imaging applications?

RESULTS

- Nanoparticle-targeted photoacoustic cavitation can be formed in small (<550 μm) nanoparticle-doped regions, giving contrast between cancerous and normal tissue. For sufficiently high laser fluence, a vapour cavity can be formed around the nanoparticles. This cavity can undergo an inertial collapse, generating a broadband emission, which can be used to form an image of the subsurface.

REFERENCES