HySpeed Computing, LLC

“Intelligent Acceleration”

J.A. Goodman, PhD, PE
President/CEO

jgoodman@hyspeedcomputing.com
PO Box 431824, South Miami, Florida USA 33243
HySpeed Computing, LLC

- A spin-off company from Gordon-CenSSIS
- Acceleration of image analysis algorithms using GPU computing
- Addressing the increasing computation needs of the remote sensing and geo-spatial community
- Initial focus on hyperspectral remote sensing of coastal ecosystems
- Developing mechanisms for tech transfer of algorithms
- Establishing partnerships with Gordon-CenSSIS
Increasing Computer Processing Requirements

Increasing Sensors/Data
- NASA ‘A-train’ Satellite Constellation
- Hyperspectral Imagery

Global Analysis/Modeling
- Sea Surface Temperature
- Vegetation Indices
- Chlorophyll Concentration
Graphics Processing Unit (GPU) Computing

- GPUs increasingly being utilized for general purpose computing
- GPUs provide 100’s of available cores for parallel processing tasks
- GPUs are relatively inexpensive (e.g., < $1000 NVIDIA Tesla C1060 with 240 processing cores)

NVIDIA

AMD

NVIDIA Fermi Architecture
Initial Demonstration Project

- **Project selection:**
 - Select a computationally intensive remote sensing problem
 - Select an established algorithm, with successful application history

- **Selected application:**
 - Subsurface sensing of marine habitats, e.g., coral reefs
 - Algorithm developed by Goodman (2004), Goodman et al. (2008), Goodman and Ustin (2007)

- **Interested user community:**
 - Coral reef ecologist and coastal resource managers
 - Federal agencies - NRL, NOAA, NASA, USGS
 - Coastal remote sensing researchers
Remote Sensing of Submerged Marine Habitats

- Challenging image analysis problem
- Complex physical interactions

1. **Sensor Characteristics:**
 - Signal to Noise (S/N) Ratio
 - Spatial and Spectral Resolution

2. **Atmospheric Conditions:**
 - Scattering and Absorption
 - Gases and Aerosols

3. **Signal from the Water Column:**
 - Surface Conditions
 - Light Penetration
 - Bio-Optical Properties

4. **Signal from the Bottom:**
 - Water Depth
 - Bottom Type
 - Size of the Community
Hyperspectral Inversion Model

Raw AVIRIS Imagery

Image Pre-Processing
- Glint Removal
- Atmospheric Correction

Spectral Input Parameters
- Aquatic Absorption Properties
- Generic Bottom Reflectance

Inversion Model

Inversion Output
- Water Properties
- Bathymetry
- Bottom Albedo (550 nm)

Image Geometry
- Explicit pixel by pixel subsurface angles

View

Illumination
Spectral Unmixing Model

- **Pre-Processed AVIRIS Imagery**

- **Spectral Endmembers**
 - Reflectance vs. Wavelength (nm)
 - Graph showing absorption properties of Sand, SAV, and Coral.

- **Inversion Output**
 - Water Properties
 - Bathymetry

- **Forward Model**
 - Spectral Input Parameters
 - Aquatic Absorption Properties
 - Generic Bottom Reflectance
 - Image Geometry
 - Explicit pixel by pixel subsurface angles
 - View
 - Illumination

- **Unmixing Output**
 - Benthic Composition
 - Sand
 - Coral
 - SAV

Gordon-CenSSIS Site Visit 2010
Commercialization Objectives

- Leverage the processing power of GPU computing
- Develop modules for remote sensing and geo-spatial COTS software
- Develop and accelerate advanced remote sensing algorithms, e.g.,
 - calibration
 - classification
 - spectral unmixing
 - transformations
 - geo-correction
 - endmember identification
 - dimensionality reduction
 - inversion modeling
- Develop techniques for embedded processing