Gordon Center for Subsurface Sensing & Imaging Systems

Research Thrust R2

Physics-Based Signal Processing and Image Understanding

David Castañón

NSF Year 9 Site Visit
April 22, 2009
R2’s Role in CenSSIS

- **Biological-Medical Applications**
- **Environmental-Civil Applications**

Algorithm requirements
- **Common mathematical structures**

Application instantiations
- **General information extraction approaches**
R2 Thrust Organization

- **R2A: Multiview Tomography**
 - David Castañón

- **R2B: Localized Probing and Mosaicing**
 - Badri Roysam

- **R2C: Multispectral Discrimination**
 - Miguel Vélez-Reyes

- **R2D: Image Understanding**
 - Richard Radke
Focus of research: Image formation from tomographic measurements
- Modalities of interest in CenSSIS:
 - EIT, ERT, DOT, GPR, diffraction tomography, CT, ultrasound, elastography

Diverse applications approached through a common view: statistical physics-based inverse scattering
- Inverse problem goals + physics model + solution representation + robust decision-directed algorithm

Objective: Improved resolution, signal-noise in subsurface imaging

\[
Y = \mathcal{T}(\alpha, S, \gamma) + w
\]
Major Results: High-Resolution Inversion

- **Example: Object-based inverse scattering**
 - Extension to MVT of computer vision concepts
 - Characterize objects in terms of boundaries, regions, textures
- **CenSSIS-developed theory, many applications**
 - DOT, GPR, PET, EIT, ultrasound, Hyperspectral, ...
High Intensity Focused Ultrasound (HIFU)
- Used to necrose cancerous tissue
- HIFU perturbs both sound speed and acoustic attenuation
- Usual beamforming methods insufficient

HIFU Lesions
- Shape: cigar (without cavitation) or tadpole (with cavitation)
Physics-Based Inversion Approach

- Multi-parameter acoustic inversion (contrast in sound-speed & attenuation)
 - Models from collaborations with R1 colleagues
 - Born approximation
- Low contrast object embedded in highly cluttered background
 - Limited angle so exploit regularization techniques (total variation)
 - Assume lesion profile is spatially constant
- Sound speed and attenuation are constant multiples of one another
Initial Results

- Formulated as convex optimization problem
 - Determine single contrast function and proportionality constant
 - Minimize total variation of contrast subject to data residual constraint

- Experiment Set-up:
 - 17 uniformly spaced frequencies [2,5] MHz
 - 11 curved rectangular elements (BK8665) focused 7 cm away from the center element

- Future work:
 - Use of advanced regularization (cartoon-texture decomposition)
 - Extensive testing with “exact” synthetic data, clutter

Example reconstruction (30 dB SNR), error in c~3%
High-Resolution Plaque Imaging

- Goal: diagnose atherosclerosis plaque buildup non-invasively using multiple modalities
 - Problem: calcium blooming distorts severity of stenosis
 - Collaboration with MGH
Ex Vivo Results

- Cadaveric heart in thorax phantom
- Siemens Sensation-64 MDCT
 - 120-kVp, pitch=0.2, 330-ms rotation, 12-cm FOV
- Algorithm: MBAI (model-based algebraic iteration) from 2007-8
Region of Interest Tomography

- Calcium artifact is small in size
 - May be acceptable to process sub-volume of data
 - Use filtered backprojection volume \(f \) to initialize process

- Want to work with \(f_{ROI} \) and projection \(g_{ROI} \)
- But \(g_{ROI} \) is corrupted by data from \(f_{ROI}^+ \)

Solution
- Delineate \(f_{ROI} \) from FBP image
- Estimate \(f_{ROI}^+ \)
- Compute \(g_{ROI}^+ \) from \(H \cdot f_{ROI}^+ \)
- Remove projections from areas outside of \(f_{ROI} \) to work only with \(g_{ROI} \)

Result: ability to work with smaller volume, performing fewer projections

From S. Do, Z. Liang, W. C. Karl, T. Brady, H. Pien, “A projection-driven pre-correction technique for reconstruction of helical cone-beam cardiac CT,” SPIE Med Imaging 2008
In Vivo MBAI Processing – Stent 1

B35f MBAI B46f
In Vivo MBAI Processing – Stent 2

B35f MBAI B46f
GP-GPU – nVidia

- Working with R3 researchers to develop nVidia solution
- Approx 15x speedup on single GeForce 8800
 - 128 processors
- Implementing code on Tesla S870 1-U compute server
 - 512 processors
 - 6GB dedicated RAM
New Focus: Multi-modal Plaque Imaging

- **Multimodal integration of PET and rapid CT**
 - PET/FDG imaging of plaque inflammation
 - Non-invasive, early detection of vascular disease would be a game changer

- **Challenges:**
 - Low resolution of PET
 - Long integration times
 - Motion: breathing, cardiac motion

- **Approach:**
 - New superresolution methods for joint PET/CT
 - Integrate cardiac and respiratory motion
 - Incorporate instrument response model

PET overlay (colored) on CT (gray) showing blurring of stented vessel in PET.
Outline of Approach

- **Video CT delineates major motion of heart and vessels**
 - Can integrate video techniques (e.g. optical flow) to estimate motion

- **Temporal inversion of PET data using motion compensation and boundary data from CT**
 - Compensate both for cardiac and respiratory motions
 - Motion: breathing, cardiac motion

- **Incorporate limitations of instrument model for robust inversion**
 - Errors in temporal segmentation, instrument resolution
 - Frame alignment, motion estimation errors
Preliminary results

Reference Activity Image
Conventional PET Image
New Superresolution Approach
Goal: Dose Reduction while Retaining Diagnostic Quality

Approach:
- Develop and apply new iterative methods for CT reconstruction
- Inclusion of source and detector response function

Conventional Full Dose
Conventional 25% Dose
New IRT 25% Dose
Note preservation of detail
Impedance Tomography

- **Principle:** Apply electrical currents on electrodes, record resulting voltages
 - Estimate conductivity and permittivity
 - Multiple frequencies: spectral content

- **Applications**
 - Breast imaging, chest imaging

- **R2 Requirements:**
 - High sensitivity and specificity
 - Mammography and Ultrasound Geometry

Relevant physics:
- Electromagnetic Theory

ACT 4 instrument & processing for MGH breast imaging experiments
Multimodality Breast Imaging: X-Ray and EIT

Admittivity loci for 6 frequencies (5 Khz – 1 MHz)

ROI 1

ROI 2

Linearity is strong
Indicator of carcinoma: LCM Statistic
Very Preliminary results from Patient study at Mass. General.

<table>
<thead>
<tr>
<th>LCM</th>
<th>Breasts containing malignancies</th>
<th>Breasts not containing malignancies</th>
<th>Total</th>
<th>LCM</th>
<th>Positive Dx</th>
<th>Negative Dx</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Actual</td>
<td>4</td>
<td>45</td>
<td>49</td>
<td>True result</td>
<td>4</td>
<td>40</td>
<td>44</td>
</tr>
<tr>
<td>Detected</td>
<td>4</td>
<td>40</td>
<td>44</td>
<td>False result</td>
<td>5</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Total</td>
<td>9</td>
<td>40</td>
<td>49</td>
</tr>
</tbody>
</table>

Linear Correlation Measure (LCM) for 49 breasts studied.
Sensitivity = 100%, Specificity = 89%.
New Instrument: Handheld Ultrasound and EIT

Handheld probe to combine EIS with US in one exam.
Collaboration with R1, R2

New Challenge: Ultrasound-augmented inversion of EIT in open domains
Enhanced Approach: Direct Nonlinear Inversion Methods

- **Nonlinear direct inversion algorithm (d-bar)**
 - Noniterative, suitable for real-time implementation
 - Complex geometric optics

- **Tested in L2 testbed for dynamic breast imaging with 2-D circular geometry**
 - Extension of direct approach for other geometries, inverse problems under development

- **New ideas for extension to 3D geometries**

Given Λ_σ find μ?

1. Find Ψ on ∂B:

 $[I + S(\Lambda_\sigma - \Lambda_1)] \Psi = \exp(i\zeta \cdot p)$ on ∂B

 $(Sw)(p) = \int_{\partial B} G(p - t)w(t)ds(t)$

 $-\Delta G = \delta$, $G \approx \exp(i\zeta \cdot p)$ as $|p| \to \infty$

2. Compute scattering transform

 $t(k) = \int_{\partial B} \exp(i\zeta \cdot p) (\Lambda_\sigma - \Lambda_1) \Psi(p)ds(p)$

3. Solve $\bar{\partial}$ equation for $\mu(p, \zeta)$;

 $\frac{\partial \mu}{\partial \bar{k}} = \frac{1}{4\pi k} t(k) \exp(i(\zeta + \bar{\zeta}) \cdot p) \bar{\mu}(p, k)$

4. Take $\lim_{k \to 0} \mu(p, \zeta) = \sigma^{1/2}(p)$
Future Directions

- Additional adaptation of algorithms to applications
 - HIFU, multi-modal breast imaging, luggage and body scans, ...

- Exploration of new directions
 - Compressive sensing
 - Sparse aperture reconstruction
 - Controlled active sensing
 - Reconstruction under significant motion

- New applications
 - Security, energy, health care, ...
R2-Related Posters

- **R1A p1** “Advanced Image Processing in Cardiac PET/CT to Enhance Early Detection of Coronary Artery Diseases,” S Ambwani, WC Karl, H. Pien
- **R2A p2** "Advanced Tomosynthesis Workstation" HE Guven, EL Miller, RO Cleveland
- **MedP1** “Combined EIT Regional Admittivity Spectra and X-Ray Tomosynthesis for Breast Cancer Detection,” D. Ardrey, G. Saulnier, D. Isaacson
- **R2B p1** "Quantifying Biomarkers in Histopathology Samples with Cellular Scale and Specificity using Multiplex Immunostaining and Quantitative Image Analysis" K Grama, B Roysam
- **R2B p2** "A Functional Model for Automated Segmentation and Tracking of C. Elegans Locomotive Behavior During Chemotaxis“ TT Turnquest, K Kutten, B. Roysam
- **R2B p4** "Segmentation and Tracking Algorithms on Parallel Hardware,“ A Narayanaswamy, B Roysam
- **R2B p5** "New Method for Segmenting Dendritic Spines from 3D Confocal Microscopy Images,“ H Sharafeddin, B. Roysam
- **R2B p6** "Automated Methods for Profiling the Axonal Transport of Secretory BDNF Granules in Live Cultured Neurons from Time-lapse Microscopy Data,“A Mukherjee , B Roysam , S Kaech Petrie,G Banker
R2-Related Posters

- **R2C p3** "Detection of Interest Point for Multispectral and Hyperspectral Images Using Lowe’s Approach and Anisotropic Diffusion," L Paola Dorado-Munoz, A Mukherjee, M Velez-Reyes, B Roysam

- **R2C p4** "A Comparison of Unmixing Algorithms for Hyperspectral Imagery,“ A Santos-Garcia, M Velez-Reyes, S Rosario, JD Chinea

- **R2C p5** "Comparison of Basis-Vector Selection Methods for Target Detection,“ C Pena Ortega, M Velez Reyes

- **R2C p6** “Hyperspectral Texture Synthesis by Multiresolution Pyramid Decomposition,

- **R2C/Dp7** "A Tunable, Multi-scale, Multi-band Segmentation Procedure for Remotely-Sensed Imagery,“ K Griffis, M Bystrom

- **R2C/D p8** “Pattern Recognition Methods for Spectral Classification in ESS Diagnosis of Cancer,“ E Rodriguez-Diaz, DA Castanon, IJ. Bigio

- **R2D p1** "Shape Simulations and Image Segmentation for Image-guided Radiotherapy,“ S Chen, R Radke"
R2-Related Posters

- **R2C p3** "Detection of Interest Point for Multispectral and Hyperspectral Images Using Lowe’s Approach and Anisotropic Diffusion," L Paola Dorado-Munoz, A Mukherjee, M Velez-Reyes, B Roysam
- **R2C p5** "Comparison of Basis-Vector Selection Methods for Target Detection, “C Pena Ortega, M Velez Reyes
- **R2C p6** "Hyperspectral Texture Synthesis by Multiresolution Pyramid Decomposition,
- **R2C/Dp7** "A Tunable, Multi-scale, Multi-band Segmentation Procedure for Remotely-Sensed Imagery, “K Griffis, M Bystrom
- **R2D p1** "Shape Simulations and Image Segmentation for Image-guided Radiotherapy,” S Chen, R Radke"
R2-Related Posters

- **R2D p2** "Robust Estimation of a Random Parameter in a Gaussian Linear Model with Joint Eigenvalue and Elementwise Covariance Uncertainties,“ R Mittelman, EL Miller
- **R2D p3** "Enhancing Embryo Viability Identification Using 3d Dic Microscopy Images,“ H Sierra, C DiMarzio, D Brooks
- **R2D p4** "Modeling Habituation in Evoked Response in Rat EEG Via a Dynamical Modeling Habituation in Evoked Response in Rat EEG Systems Based Neural Mass Model." S Laxminarayan, D Brooks, G Tadmor, MA Franceschini, E Miller
- **R2D p5** "Theoretical Models for Imaging Distributed Fish Groups in an Ocean Eaveguide Eith Eide-area Sonar Including Multiple Scattering,” M Andrews, P Ratilal
- **R2D p6** "Temporal and Spatial Coherence of Fish Scattered Returns,“ Z Gong, P Ratilal
- **Sea p1** "Benthic Habitats Mosaics from the PR Hyperspectral Survey," L Alvarado Ortiz, M Velez Reyes, S Rosario Torres, J Goodman
- **Sea p2** "Hyperspectral Image Registration and Fusion for Underwater Applications,“ CJ Solis Ramirez, RE Torres
- **Sea p3** "Modification of the SeaBed Autonomous Underwater Vehicle for Hyperspectral Image Acquisition,“ CJ Solis Ramirez, RE Torres
- **Sea p4** "Analysis of Fish Low Frequency Target Strength,“ D. Tran, Z Gong, M Andrews, P Ratilal
- **Soil p1** "Detection of DNAPLs in Underground Systems using Cross Well Radar Technology,“ J Toro Vázquez, R Rodríguez Solis, I Padilla