Fusing Multi-Modality Inverse Data through Shared Boundary Structure

W. Clem Karl
Boston University
The Challenge

- Fuse heterogeneous, multi-modal inverse imaging data
- Examples:
 - CT and MRI
 - Tomosynthesis and DOT
 - PET and CT
“Vulnerable” plaques lead to heart attacks or strokes

Calcifications indicate plaque, not necessarily vulnerable

Vulnerable plaques have lipid pool and thin fibrous cap: soft tissue

- No single modality can reliably detect/localize
Typical Fusion Approach

- Perform separate reconstruction, registration, enhancement steps, followed by fusion/interpretation
 - Simple, but information reinforcement is at the “back end”
 - Reconstructions do not benefit from the presence of other modalities
Brute Force Fusion Approach

- Relate each modality to a common set of parameters
- Perform one reconstruction from the combined data
 - Requires physical models relating each observed quantity to the common parameters – usually not practical!

Raw Data
CT Projections

Single Reconstruction

MR Low Res.
Our Approach: Exploit shared structure

- Boundary structure often shared, despite different sensing mechanisms
- Idea: Exploit this shared structure for unified reconstruction, registration, and enhancement
- Modalities benefit from each other!
Shared Structure Fusion Formulation

- Minimize unified objective function based on shared boundary field
- Framework simultaneously incorporates:
 - Inversion
 - Enhancement/Regularization
 - Registration
 - Boundary fusion

\[
\arg\min_{f, s, \phi} \sum_{k=1}^{K} \left[\mathcal{E}_{k}^{\text{fid}} (T_k f_k; g_k) + \mathcal{E}_{k}^{\text{sm}} (f_k, s, \phi_k) + \mathcal{E}_{k}^{\text{alg}} (\phi_k) \right] + \mathcal{E}^{\text{bnd}} (s)
\]

- Data Fidelity
- Edge Enhancement
- Registration Model
- Boundary Model
Component terms in objective function

\[
\arg\min_{f, s, \phi} \sum_{k=1}^{K} \left[E_k^{\text{fid}} (T_k f_k; g_k) + E_k^{\text{sm}} (f_k, s, \phi_k) + E_k^{\text{align}} (\phi_k) \right] + E^{\text{bnd}} (s)
\]

- **Data fidelity**
 \[
 E_k^{\text{fid}} (f_k, g_k) = \gamma_k^2 \int_{U_k} \left[g_k - T_k f_k \right]^2 \, du_k
 \]

- **Edge Enhancement**
 \[
 E_k^{\text{sm}} (f_k, s, \phi_k) = \lambda_k^2 \int_{X_0} \left\| \nabla f_k (\phi_k (x_0)) \right\|^2 \left[(1 - \alpha) [1 - s(x_0)]^2 + \alpha \right] \, dx_0
 \]

- **Registration Model**
 \[
 E_k^{\text{align}} (\phi_k)
 \]

- **Boundary Model**
 \[
 E^{\text{bnd}} (s) = \int_{X_0} \rho \left\| \nabla s \right\|^2 + \frac{1}{\rho} s^2 \, dx_0
 \]

Ambrosio-Tortorelli boundary model
Block Coordinate Optimization

Initialize leakage, α, large

ρ fixed

Estimate Recon.'s

Estimate Common Boundary Field

Recon. Optimization

Reduce leakage, α

Quadratic, fast

Estimate Common Boundary Field

Update Alignments

Align. Optimization

Reduce ρ

Quadratic, fast

Nonlinear, small

ρ fixed

Increase boundary, ρ
Simulated Example

- True CT
- Data \(g_1 \)
- Unimodality \(f_1 \)
- Joint \(f_1 \)

- True MR
- Data \(g_2 \)
- Unimodality \(f_2 \)
- Joint \(f_2 \)

Joint Boundary
Simulated Vessel Alignment

Boundary width scale:
\[
\rho = 16 \rightarrow \rho = 8 \rightarrow \rho = 4 \rightarrow \rho = 2
\]

CT: \(f_1(x_1) \)

MR: \(f_2(\phi_2(x_1)) \)

composit
<table>
<thead>
<tr>
<th></th>
<th>True CT</th>
<th>Fused s</th>
<th>Composite</th>
<th>True MR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unimodality</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fused CT</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fused MR</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Ex Vivo Right Coronary Artery

MR, Unimodal
Calcium
Lumen
Fatty
CT FBP Recon.
Unimodal

Fused MR

Joint Boundary
CT/MR Composite

Fused CT
Conclusions

- Joint multi-modality inversion framework
 - Modular:
 - Can utilize different modalities, forward models, and constituent inversion approaches
 - Incorporates:
 - Physical observation models
 - Piecewise-homogeneous priors
 - Fused boundaries
 - Image registration
 - Provides principled framework for multi-modality fusion