Overview
Michael B. Silevitch
Director

NSF
Year Two Site Visit
May 21, 2002
Outline of the CenSSIS Overview

- Vision and mission
- The CenSSIS team
- Research strategy and program
- Organization and management
- Education program
- Industrial collaboration
- Summary
The CenSSIS Vision and 10 Year Mission Will Impact Research, Education and Industry

Top Level Goals

- Attack important Real World Problems
- Create a Systemic Approach Using the Engineered Process I-PLUS
 - Incorporate a unifying framework
 - *Diverse Problems - Similar Solutions*
 - Incorporate General Purpose Simulation and Validation Tools for Rapidly Assessing New Ideas
- Tech Transfer Proof of Concept Designs of new multi-sensor instruments
- *Educate Students to Address Multi-disciplinary Challenges*
Why Are There Similar Solutions?

- Physics Based Signal Processing
- Reusable Hardware & Software Tools
- Parallel Computation Resources

Complex Subsurface Medium

Surfaces

Probes

Detectors

Target
Wave Probes of Subsurface Media Unifies the CenSSIS Approach to a Wide Range of Problems

Subcellular Biology

- 100nm - 100 μm

Tissues & Organs

- 10 μm - 10 cm

Underground Diagnosis

- 1 cm - 100 m

Underwater Exploration

- 10 cm - 1 km

Optics

Ultrasound

Radar

Sonar

Wave Probes of Subsurface Media Unifies the CenSSIS Approach to a Wide Range of Problems

- 100nm - 100 μm

- 1 cm - 100 m

- 10 μm - 10 cm

- 10 cm - 1 km
There is a Broad Taxonomy of Subsurface Sensing Characteristics and Phenomena

Probe(s) → Detectors

Medium

Target

Probe:
- Electro-magnetic
- Acoustic
- Optical/IR
- X-Ray
- CW
- Pulsed
- Modulated
- Coherent
- Partially Coherent
- Multi-spectral
- Classical
- Quantum
- Outside
- Inside
- Auxiliary

Medium:
- Absorption
- Dispersion
- Scattering
- Diffusion
- Clutter
- Inhomogeneous/Layered
- Rough Surface

Target:
- Absorption
- Fluorescence
- Nonlinear Absorption
- Scattering
- Nonlinear Scattering
- Diffusive
- Phase Object
- Depolarizing
- Stationary
- Moving
How can we Organize the Many Existing Subsurface Information Extraction Methods?

Localized Probing & Mosaicing (LPM)

Focused or Pulsed Probe
Focused or Gated Detector

Multi-Spectral Discrimination (MSD)
Wide Band Probe
Narrow Band Detectors

Multi-View Tomography (MVT)
Sources
Object
Detectors
Outline of the CenSSIS Overview

- Vision and mission
- The CenSSIS team
- Research strategy and program
- Organization and management
- Education program
- Industrial collaboration
- Summary
What is the CenSSIS Team?
What is the Role of the CenSSIS Strategic Affiliates?

- Massachusetts General Hospital
- Brigham and Women's Hospital
- Lawrence Livermore National Laboratory
- Woods Hole Oceanographic Institution

Important Biomedical Problems

Important Environmental & Civil Problems
Outline of the CenSSIS Overview

- Vision and mission
- The CenSSIS team
- Research strategy and program
- Organization and management
- Education program
- Industrial collaboration
- Summary
A Top Down Approach Motivates Our Strategic Plan

System Goal: Solve Real World Subsurface Problems

Use a Validated Physics-Based Approach

Identify Barriers & Research Thrusts

New Methods for Subsurface Problems

Testbeds to Validate Framework

Develop Physical/Math Framework

Level 3 Engineered System

Level 2 Enabling Technology

Level 1 Fundamental Science

System Goal:
Solve Real World Subsurface Problems

New Methods for Subsurface Problems

Testbeds to Validate Framework

Develop Physical/Math Framework

Identify Barriers & Research Thrusts

Use a Validated Physics-Based Approach

Use a Validated Physics-Based Approach
The Barriers Stem from the CenSSIS Top Level Goals

Level 3 (L3) Engineered System

Level 2 (L2) Enabling Technology

Level 1 (L1) Fundamental Science
What Fundamental Science Barriers Crosscut Application Areas?

Barrier 1
Inadequate understanding of the physics of subsurface sensing and imaging

Barrier 2
Unreliable inversion methods for inhomogeneous and cluttered subsurface media

Barrier 3
Lack of robust, physics-based recognition and sensor fusion techniques
What Barriers Prevent the Development of an Integrated Engineered System?

Barrier 4
Lack of computationally efficient, realistic physical models

Barrier 5
Lack of optimal end to end sensor design methods

Barrier 6
Lack of rapid processing and management of large image databases

Barrier 7
Lack of validated, integrated processing and computation tools

Barrier 8
Lack of a unified framework for diverse sensing and imaging modalities
Overview of the Research Program

- **Fundamental Science**
 - Subsurface Sensing and Modeling
 - Physics-Based Signal Processing and Image Understanding
 - Image and Data Information Management

- **Enabling Technologies**
 - Validation Testbeds

- **Engineered System**
 - Bio-Medical Applications
 - Environmental-Civil Applications

I-PLUS
A Long Range Goal: An Engineered System

Integrated Process for Looking Under Surfaces

“I-PLUS”

Enables Rapid and Efficient Development of New Subsurface Technologies and Solutions

- Leverages Lessons Learned - Similar Solutions
- Solutionware for effective modeling & processing
- TestBEDs for validation with measured data
- Demonstrated on Important Societal Problems
The I-PLUS Process Incorporates Our Unifying Framework

Information Extraction Strategies

- LPM
- MVT
- MSD

Subsurface Sensors
Physical Models

Reconfigure for Optimal Performance

R1: Subsurface Sensing & Modeling
R2: PBSP & Image Understanding
R3: Image & Data Info. Management
Four Validating TestBEDs Help Enable the Evolution of the Engineered Process I-PLUS

- **BioBED**: 100nm - 100 µm
- **MedBED**: 10 µm - 10 cm
- **SoilBED**: 1 cm - 100 m
- **SeaBED**: 10 cm - 1 km
The Fundamental Science Project Areas Stem from Our Strategic Barriers

- **Thrust R1: Subsurface Sensing & Modeling**
 - R1A - Nonlinear and Dual Wave Probes
 - R1B - Effective Forward Models

- **Thrust R2: Physics Based Signal Processing & Image Understanding**
 - R2A - Multi-View Tomography (MVT)
 - R2B - Localized Probing and Mosaicing (LPM)
 - R2C - Multi-Spectral Discrimination (MSD)
 - R2D - Image Understanding & Sensor Fusion

- **Thrust R3: Image & Data Info Management**
 - R3A - Parallel Hardware Implementation
 - R3B - Solutionware Tools
How Can CenSSIS Achieve Integration of Research Effort?

Important Outcomes - Center Deliverables at All Three Strategic Levels

- **Fundamental Science Level**
 - Thrust R1, R2, R3 State of the Art Advances

- **Enabling Technology Level**
 - Re-Usable Validating BEDs
 - Re-Usable Solutionware Products

- **Engineered System Level**
 - Unifying Framework Demos
 - 1st Generation I-PLUS Engineered Process
 - Multi-Sensor Instrument Demos
 - Advances in Solving Real World Problems

- **Multi-Institutional Collaboration**
"Quilt Chart" Organization & Integration of Year Two CenSSIS Research Program

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>CenSSIS Research Areas</td>
<td></td>
</tr>
<tr>
<td>R1A Nonlinear and Dual Wave Probes</td>
<td></td>
</tr>
<tr>
<td>R1B Effective Forward Models</td>
<td></td>
</tr>
<tr>
<td>R2A MVT Methods</td>
<td></td>
</tr>
<tr>
<td>R2B LPM Methods</td>
<td></td>
</tr>
<tr>
<td>R2C MSD Methods</td>
<td></td>
</tr>
<tr>
<td>R2D Image Understanding & Sensor Fusion Methods</td>
<td></td>
</tr>
<tr>
<td>R3A Parallel Hardware Implementation for Fast Subsurface Detection</td>
<td></td>
</tr>
<tr>
<td>R3B Solutionware Tools</td>
<td></td>
</tr>
<tr>
<td>Initial TestBED Facilities</td>
<td></td>
</tr>
<tr>
<td>Bio, Med, Soil, SeaBEDs</td>
<td></td>
</tr>
<tr>
<td>I-PLUS Development</td>
<td></td>
</tr>
<tr>
<td>Bio, Med, Soil, Sea (Real Problems)</td>
<td></td>
</tr>
</tbody>
</table>

Relative Contribution to Outcomes

- **Fundamental Science Level**
- **Enabling Technology Level**
- **Engineered System Level**

![Image of Quilt Chart with colors indicating contribution levels]
“Quilt Chart” Organization & Integration of Year Two CenSSIS Research Program

<table>
<thead>
<tr>
<th>Fundamental Science Level</th>
<th>Enabling Technology Level</th>
<th>Engineered System Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>R1A Nonlinear and Dual Wave Probes</td>
<td>I-PLUS Development</td>
<td>Bio, Med, Soil, Sea (Real Problems)</td>
</tr>
<tr>
<td>Bio, Med, Soil, Sea (Real Problems)</td>
<td>Initial TestBED Facilities</td>
<td>Bio, Med, SoilBEDs</td>
</tr>
<tr>
<td>R3B Solutionware Tools</td>
<td>R3A Parallel Hardware Implementation for Fast Subsurface Detection</td>
<td>R2D Image Understanding & Sensor Fusion Methods</td>
</tr>
<tr>
<td>R2C MSD Methods</td>
<td>R2B LPM Methods</td>
<td>R2A MVT Methods</td>
</tr>
<tr>
<td>R1B Effective Forward Models</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Relative Contribution to Outcomes

Important Outcomes

CenSSIS Research Areas

Multi-Institution Collaboration

Multi-Sensor Instrument Demos

1st Generation I-PLUS Process Advances in Solving Real World Problems

Unifying Framework Demos

Solutionware Products

Usable Validating “BEDs” Thrus R3 SOA Advances

Thrus R2 SOA Advances

Thrus R1 SOA Advances
CenSSIS Research Areas

<table>
<thead>
<tr>
<th>Thrus</th>
<th>Fundamental Science Level</th>
<th>Enabling Technology Level</th>
<th>Engineered System Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>R1A</td>
<td>Nonlinear and Dual Wave Probes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>R1B</td>
<td>Effective Forward Models</td>
<td></td>
<td></td>
</tr>
<tr>
<td>R2A</td>
<td>MVT Methods</td>
<td></td>
<td></td>
</tr>
<tr>
<td>R2B</td>
<td>LPM Methods</td>
<td></td>
<td></td>
</tr>
<tr>
<td>R2C</td>
<td>MSD Methods</td>
<td></td>
<td></td>
</tr>
<tr>
<td>R2D</td>
<td>Image Understanding & Sensor Fusion Methods</td>
<td></td>
<td></td>
</tr>
<tr>
<td>R3A</td>
<td>Parallel Hardware Implementation for Fast Subsurface Detection</td>
<td></td>
<td></td>
</tr>
<tr>
<td>R3B</td>
<td>Solutionware Tools</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bio, Med, Soil, SeaBEDs</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I-PLUS Development</td>
<td>Bio, Med, Soil, Sea (Real Problems)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CenSSIS Research Areas</td>
<td>Important Outcomes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>------------------------</td>
<td>--------------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>R1A Nonlinear and Dual Wave Probes</td>
<td>Trust R1 SOA Advances</td>
<td></td>
<td></td>
</tr>
<tr>
<td>R1B Effective Forward Models</td>
<td>Trust R2 SOA Advances</td>
<td></td>
<td></td>
</tr>
<tr>
<td>R2A MVT Methods</td>
<td>Trust R3 SOA Advances</td>
<td></td>
<td></td>
</tr>
<tr>
<td>R2B LPM Methods</td>
<td>Usable Validating “BEDs”</td>
<td></td>
<td></td>
</tr>
<tr>
<td>R2C MSD Methods</td>
<td>Solutionware Products</td>
<td></td>
<td></td>
</tr>
<tr>
<td>R2D Image Understanding & Sensor Fusion Methods</td>
<td>Unifying Framework Demos</td>
<td></td>
<td></td>
</tr>
<tr>
<td>R3A Parallel Hardware Implementation for Fast Subsurface Detection</td>
<td>Advances in Solving Real World Problems</td>
<td></td>
<td></td>
</tr>
<tr>
<td>R3B Solutionware Tools</td>
<td>1st Generation I-PLUS Process</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Initial TestBED Facilities Bio, Med, Soil, SeaBEDs</td>
<td>Multi-Sensor Instrument Demos</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I-PLUS Development Bio, Med, Soil, Sea (Real Problems)</td>
<td>Multi-Institution Collaboration</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Important Outcomes

- **CenSSIS Research Areas**
 - R1A Nonlinear and Dual Wave Probes
 - R1B Effective Forward Models
 - R2A MVT Methods
 - R2B LPM Methods
 - R2C MSD Methods
 - R2D Image Understanding & Sensor Fusion Methods
 - R3A Parallel Hardware Implementation for Fast Subsurface Detection
 - R3B Solutionware Tools
 - Initial TestBED Facilities Bio, Med, Soil, SeaBEDs
 - I-PLUS Development Bio, Med, Soil, Sea (Real Problems)

Table

<table>
<thead>
<tr>
<th>Fundamental Science Level</th>
<th>Enabling Technology Level</th>
<th>Engineered System Level</th>
</tr>
</thead>
</table>

Notes

- **Important Outcomes**
 - **CenSSIS Research Areas**
 - **R1A Nonlinear and Dual Wave Probes**
 - **R1B Effective Forward Models**
 - **R2A MVT Methods**
 - **R2B LPM Methods**
 - **R2C MSD Methods**
 - **R2D Image Understanding & Sensor Fusion Methods**
 - **R3A Parallel Hardware Implementation for Fast Subsurface Detection**
 - **R3B Solutionware Tools**
 - **Initial TestBED Facilities Bio, Med, Soil, SeaBEDs**
 - **I-PLUS Development Bio, Med, Soil, Sea (Real Problems)**

- **Important Outcomes**
 - **Fundamental Science Level**
 - **Enabling Technology Level**
 - **Engineered System Level**
“Quilt Chart” Organization & Integration of Year Two CenSSIS Research Program

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>R1A Nonlinear and Dual Wave Probes</td>
<td></td>
</tr>
<tr>
<td>R1B Effective Forward Models</td>
<td></td>
</tr>
<tr>
<td>R2A MVT Methods</td>
<td></td>
</tr>
<tr>
<td>R2B LPM Methods</td>
<td></td>
</tr>
<tr>
<td>R2C MSD Methods</td>
<td></td>
</tr>
<tr>
<td>R2D Image Understanding & Sensor Fusion Methods</td>
<td></td>
</tr>
<tr>
<td>R3A Parallel Hardware Implementation for Fast Subsurface Detection</td>
<td></td>
</tr>
<tr>
<td>R3B Solutionware Tools</td>
<td></td>
</tr>
<tr>
<td>Initial TestBED Facilities</td>
<td></td>
</tr>
<tr>
<td>Bio, Med, Soil, SeaBEDs</td>
<td></td>
</tr>
<tr>
<td>I-PLUS Development</td>
<td></td>
</tr>
<tr>
<td>Bio, Med, Soil, Sea (Real Problems)</td>
<td></td>
</tr>
</tbody>
</table>

CenSSIS Research Areas

Relative Contribution to Outcomes

- **Fundamental Science Level**
- **Enabling Technology Level**
- **Engineered System Level**

Important Outcomes

- **R1A Nonlinear and Dual Wave Probes**
- **R1B Effective Forward Models**
- **R2A MVT Methods**
- **R2B LPM Methods**
- **R2C MSD Methods**
- **R2D Image Understanding & Sensor Fusion Methods**
- **R3A Parallel Hardware Implementation for Fast Subsurface Detection**
- **R3B Solutionware Tools**
- **Initial TestBED Facilities**
 - Bio, Med, Soil, SeaBEDs
- **I-PLUS Development**
 - Bio, Med, Soil, Sea (Real Problems)
"Quilt Chart" Organization & Integration of Year Two CenSSIS Research Program

<table>
<thead>
<tr>
<th>CenSSIS Research Areas</th>
<th>Important Outcomes</th>
</tr>
</thead>
<tbody>
<tr>
<td>R1A Nonlinear and Dual Wave Probes</td>
<td>Thrust R1 SOA Advances</td>
</tr>
<tr>
<td>R1B Effective Forward Models</td>
<td></td>
</tr>
<tr>
<td>R2 A MVT Methods</td>
<td></td>
</tr>
<tr>
<td>R2B LPM Methods</td>
<td></td>
</tr>
<tr>
<td>R2C MSD Methods</td>
<td></td>
</tr>
<tr>
<td>R2D Image Understanding & Sensor Fusion Methods</td>
<td></td>
</tr>
<tr>
<td>R3A Parallel Hardware Implementation for Fast Subsurface Detection</td>
<td></td>
</tr>
<tr>
<td>R3B Solutionware Tools</td>
<td></td>
</tr>
<tr>
<td>Initial TestBED Facilities</td>
<td>Bio, Med, Soil, SeaBEDs</td>
</tr>
<tr>
<td>I-PLUS Development</td>
<td>Bio, Med, Soil, Sea (Real Problems)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Relative Contribution to Outcomes</th>
<th>Fundamental Science Level</th>
<th>Enabling Technology Level</th>
<th>Engineered System Level</th>
</tr>
</thead>
</table>

- **Fast pre-conditioners for conjugate gradient Helmholtz solvers**
- **Gaussian beam models for GPR scattering**
- **Modeling Underground Strata for use with EIT Algorithm**
"Quilt Chart" Organization & Integration of Year Two CenSSIS Research Program

Important Outcomes

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>R1A Nonlinear and Dual Wave Probes</td>
<td></td>
</tr>
<tr>
<td>R1B Effective Forward Models</td>
<td></td>
</tr>
<tr>
<td>R2A MVT Methods</td>
<td></td>
</tr>
<tr>
<td>R2B LPM Methods</td>
<td></td>
</tr>
<tr>
<td>R2C MSD Methods</td>
<td></td>
</tr>
<tr>
<td>R2D Image Understanding & Sensor Fusion Methods</td>
<td></td>
</tr>
<tr>
<td>R3A Parallel Hardware Implementation for Fast Subsurface Detection</td>
<td></td>
</tr>
<tr>
<td>R3B Solutionware Tools</td>
<td></td>
</tr>
</tbody>
</table>

Relative Contribution to Outcomes

- **Fundamental Science Level**
- **Enabling Technology Level**
- **Engineered System Level**

Important Outcomes

- Implement Born Approximation processing on MedBED data.
- BU-NU team works to ensure MedBED usage for MVT applications
- MVT Toolbox Development
“Quilt Chart” Organization & Integration of Year Two CenSSIS Research Program

Important Outcomes

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>R1A Nonlinear and Dual Wave Probes</td>
<td></td>
</tr>
<tr>
<td>R1B Effective Forward Models</td>
<td></td>
</tr>
<tr>
<td>R2A MVT Methods</td>
<td></td>
</tr>
<tr>
<td>R2B LPM Methods</td>
<td></td>
</tr>
<tr>
<td>R2C MSD Methods</td>
<td></td>
</tr>
<tr>
<td>R2D Image Understanding & Sensor Fusion Methods</td>
<td></td>
</tr>
<tr>
<td>R3A Parallel Hardware Implementation for Fast Subsurface Detection</td>
<td></td>
</tr>
<tr>
<td>R3B Solutionware Tools</td>
<td></td>
</tr>
</tbody>
</table>

Initial TestBED Facilities
- Bio, Med, Soil, SeaBEDs

I-PLUS Development
- Bio, Med, Soil, Sea (Real Problems)

Relative Contribution to Outcomes
- Fundamental Science Level
- Enabling Technology Level
- Engineered System Level

- **EIT Near Field Algorithms Adapted to Underground Assessment**
- **Pseudo-Inverse Methods applied to Underground and Undersea Detection**
- **Radial Diffraction Tomography applied to Underground and Medical Domains**
"Quilt Chart" Organization & Integration of Year Two CenSSIS Research Program

Important Outcomes

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>R1A Nonlinear and Dual Wave Probes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>NU-LLNL-UOK Team</td>
</tr>
<tr>
<td>R1B Effective Forward Models</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>RPI-LLNL-NU Team</td>
</tr>
<tr>
<td>R2A MVT Methods</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>BU-MGH Team</td>
</tr>
<tr>
<td>R2B LPM Methods</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>NU-BU Team</td>
</tr>
<tr>
<td>R2C MSD Methods</td>
<td></td>
</tr>
<tr>
<td>R2D Image Understanding & Sensor Fusion Methods</td>
<td></td>
</tr>
<tr>
<td>R3A Parallel Hardware Implementation for Fast Subsurface Detection</td>
<td></td>
</tr>
<tr>
<td>R3B Solutionware Tools</td>
<td></td>
</tr>
<tr>
<td>Initial TestBED Facilities</td>
<td></td>
</tr>
<tr>
<td>Bio, Med, Soil, SeaBEDs</td>
<td></td>
</tr>
<tr>
<td>I-PLUS Development</td>
<td></td>
</tr>
<tr>
<td>Bio, Med, Soil, Sea (Real Problems)</td>
<td></td>
</tr>
</tbody>
</table>

Relative Contribution to Outcomes

- **Fundamental Science Level**
- **Enabling Technology Level**
- **Engineered System Level**
Proposed Changes in Emphasis for Year Three Research Program

CenSSIS Research Areas

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>R1 A Nonlinear and Dual Wave Probes</td>
<td>Δ = +2</td>
<td>Δ = +1</td>
</tr>
<tr>
<td>R1 B Effective Forward Models</td>
<td>Δ = +1</td>
<td>Δ = +1</td>
<td></td>
<td>Δ = +1</td>
</tr>
<tr>
<td>R2 A MVT Methods</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Δ = +1</td>
</tr>
<tr>
<td>R2 B LPM Methods</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Δ = +1</td>
</tr>
<tr>
<td>R2 C MSD Methods</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Δ = +1</td>
</tr>
<tr>
<td>R2 D Image Understanding & Sensor Fusion Methods</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Δ = +1</td>
</tr>
<tr>
<td>R3 A Parallel Hardware Implementation for Fast Subsurface Detection</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Δ = +1</td>
</tr>
<tr>
<td>R3 B Solutionware Tools</td>
<td>Δ = +1</td>
<td>Δ = +2</td>
<td>Δ = +1</td>
</tr>
<tr>
<td>Initial TestBED Facilities</td>
<td></td>
<td></td>
<td></td>
<td>Δ = +1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bio, Med, Soil, SeaBEDs</td>
<td></td>
</tr>
<tr>
<td>I-PLUS Development</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Δ = +1</td>
</tr>
<tr>
<td>Bio, Med, Soil, Sea (Real Problems)</td>
<td></td>
</tr>
</tbody>
</table>

Relative Contribution to Outcomes

- **Fundamental Science Level**
- **Enabling Technology Level**
- **Engineered System Level**

Delta values indicate changes in emphasis for each area.
Proposed Changes in Emphasis for Year Three Research Program

CenSSIS Research Areas

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>R1A Nonlinear and Dual Wave Probes</td>
<td></td>
</tr>
<tr>
<td>R1B Effective Forward Models</td>
<td></td>
</tr>
<tr>
<td>R2A MVT Methods</td>
<td></td>
</tr>
<tr>
<td>R2B LPM Methods</td>
<td></td>
</tr>
<tr>
<td>R2C MSD Methods</td>
<td></td>
</tr>
<tr>
<td>R2D Image Understanding & Sensor Fusion Methods</td>
<td></td>
</tr>
<tr>
<td>R3A Parallel Hardware Implementation for Fast Subsurface Detection</td>
<td></td>
</tr>
<tr>
<td>R3B Solutionware Tools</td>
<td></td>
</tr>
<tr>
<td>Initial TestBED Facilities Bio, Med, Soil, SeaBEDs</td>
<td></td>
</tr>
<tr>
<td>I-PLUS Development Bio, Med, Soil, Sea (Real Problems)</td>
<td></td>
</tr>
</tbody>
</table>

Relative Contribution to Outcomes

- **Fundamental Science Level**
- **Enabling Technology Level**
- **Engineered System Level**

Important Outcomes

- Multi-Institution Collaboration
- Multi-Sensor Instrumentation Demos
- 1st Generation I-PLUS Process
- Advances in Solving Real World Problems
- Unifying Framework Demos
- Solutionware Products
- Usable, Validating “BEDs”
- Initial TestBED Facilities Bio, Med, Soil, SeaBEDs
- I-PLUS Development Bio, Med, Soil, Sea (Real Problems)

CenSSIS Research Areas

- R1A Nonlinear and Dual Wave Probes
- R1B Effective Forward Models
- R2A MVT Methods
- R2B LPM Methods
- R2C MSD Methods
- R2D Image Understanding & Sensor Fusion Methods
- R3A Parallel Hardware Implementation for Fast Subsurface Detection
- R3B Solutionware Tools
- Initial TestBED Facilities Bio, Med, Soil, SeaBEDs
- I-PLUS Development Bio, Med, Soil, Sea (Real Problems)
A Research & Technology Roadmap Leads to Our Engineered System — The Process (I-PLUS)

<table>
<thead>
<tr>
<th>Time</th>
<th>2000</th>
<th>2001</th>
<th>2002</th>
<th>2003</th>
<th>2004</th>
<th>2005</th>
<th>2010</th>
</tr>
</thead>
<tbody>
<tr>
<td>Locations of Experiments</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **Quantitative Underground Multisensor Diagnosis Testbed (Radar, Acoustic, Induction Arrays)**
 - LLNL
 - RPI
 - NU
 - MGH

- **SoilBED**
 - LLNL
 - NU
 - BU

- **MedBED**
 - RPI
 - NU
 - NU

- **BioBED**
 - BioBED
 - Entangled 2 Photon Microscopy
 - Quadrature Phase Retrieval Microscopy
 - High Resolution Confocal Microscopy
 - Ophthalmic Subretinal 3D Visualization and Navigation
 - Dual Wave Ultrasound/Optical Soft Tissue Imaging
 - Combined Impedance & Passive Source Tomography
 - Nonlinear Ultrasound Mechanisms
 - Phase Conjugation Time Reversal Beam Forming

- **Quadrature Phase Retrieval Microscopy**
 - BU

- **High Resolution Confocal Microscopy**
 - RPI

- **Ophthalmic Subretinal 3D Visualization and Navigation**
 - BU

- **Coherent X-Ray Protein Molecular 3D Imager**
 - LLNL

- **Civil Infrastructure and Buried Waste Characterization**
 - RPI
 - NU
 - LLNL

- **Laser-Acoustic Dual Wave Probe**
 - NU/BU

- **Cluttered Environment Modeling**
 - NU/BU

- **Indoor Hyperspectral Measurements**
 - NU
 - UPRM

- **Acoustic Camera Array**
 - WHOI

- **SeaBED**
 - WHOI
 - UPRM

- **Multisensor Medical Imaging Testbed**
 - LLNL

- **Multisensor Medical Imaging Testbed**
 - RPI

- **Hi-Contrast Tomographic Ultrasound Testbed**
 - BU

- **Hi-Res Environmental Hyperspectral Imaging/ Detection**
 - UPRM

- **Hi-Res Environmental Hyperspectral Imaging/ Detection**
 - NU

- **Shallow Ocean Distributed Sensing Imaging/Monitoring Testbed**
 - UPRM

- **Deep Sea Observatory**
 - WHOI

- **Multisensor Imager for Groundwater Contamination & Buried Waste**

- **Distributed Multi-Sensor Mariculture Monitoring System**

- **Solutionware**
 - Efficient Scalable Computation Methods
 - Image Database
 - Integrated Tomographic Feature Visualization and Sensor Fusion Tools

- **DNA Structure EUV/X-Ray Imager**

- **Multisensor 3D Medical Scanner**

- **Important Real-World Problems (System Testbeds)**

- **Primarily ERC Supported Effort**

- **Collaboration with non-ERC Effort**

- **Location of Experiments**
Key Milestones for the Research Program Over the First 5 Years of Operation
Examples of Year 2 Research “Nuggets”

- BU CenSSIS team Developed concept of “Quantum Holography”—Designated by American Institute of Physics as one of the top stories of 2001
- Dept. of Energy funds an RPI--LLNL demonstration that Near Field EIT medical imaging algorithms can be used for underground assessment
- LPM algorithms developed at RPI (retinal) & WHO (undersea) applied to improve proton beam therapy at MGH
- NU—WHOI—UPRM CenSSIS Team Implemented first generation feature searchable database of images and testBED data
These Examples Further Illustrate the CenSSIS Approach & Some Accomplishments During Year 2.

- **3D Fusion Microscope Under Construction**: This Instrument will Enable New Biological Discoveries—2004 Completion Antic.
 - Keck Foundation $750K Award to ERC (Jan. 2002)
 - Key Concept Stems from Laser- Radar Environmental Use
 - Initial Applications to Mouse Embryo Viability and to Zebra-fish Stem Cell Development

- **First Use of Diffraction Tomography to Create 3D Images of the Pit 9 Buried Waste Site**: DOE Nat’l Lab Collab.-- INEEL & LLNL
 - Assess Contaminants and Prevent Pollution to the Water Table!

- **Better Ultrasound Diagnostics Conceived to Prevent Sudden Heart Attacks**: Extension of Pit 9 Buried Waste Imaging Method
 - Detection of Vulnerable Plaque Deposits Inside Arteries
 - Simulations and Experiments Ongoing
 - $5 Million NIH Proposal to Create Clinical Demonstration

- **March 2002: Validating Testbed Data Collection Campaign Aims to Demonstrate Ability to Remotely Monitor Coral Reef Health**
 - A Major Marine Science-Ecological Concern
 - 3D Biomedical Tools Will be Used in Data Analysis
First Results From UOK-NU-INEEL-LLNL Teamwork to Assess Buried Waste in Pit 9
Students Building the AUV SeaBED at WHOI
BU-WHOI Team Explores Another Dimension of Coral Reef Assessment
Outline of the CenSSIS Overview

- Vision and mission
- The CenSSIS team
- Research strategy and program
- Organization and management
- Education program
- Industrial collaboration
- Summary
The Board of Directors Helps Bind Together Our Distributed Center

Chairman: Allen Soyster
NU Dean of Engineering

- 8 senior university administrators
 - Dean level or higher
- Highly committed industrial partners
- Board defines partnership policies
 - Academic & industrial agreements (IP, internal match, etc)
- Board provides strategic oversight
 - Bi-monthly meetings
- Yearly evaluation of the center
CenSSIS Retreat at Mayaguez Puerto Rico—March 3-5, 2002

- **22 Attendees**
 - Board of Directors (Including Industry Reps)
 - CenSSIS Executive Committee
 - Other senior research and education leaders
 - Admin and Industrial Liaison Directors

- **Impact**
 - Refined the Elements of I-PLUS
 - Addressed Board, NSF, and Industry SWOTs
 - Defined Year 3 Research & Education Priorities
 - Launched UPRM—WHOI Coral Reef Project
 - More Emphasis on Pipeline & Diversity Issues
 - CenSSIS Scholars
 - UPRM PhD Bridge Program
Board of Directors, Executive Committee
2002 Retreat in Mayaguez, Puerto Rico
Our Project Evaluation Process is Aligned With CenSSIS Goals and Mission.

- Annual RFP Process
- Progress Reports
- Proposals Submitted
- Panel Review
- Assess Alignment
- Proposed Funding Plan
- NSF Site Visit
- Feedback: Incorporated?

- Strategic Planning Consultation
- CenSSIS Research & Education Leaders
- Director & Exec. Comm.
- Final Funding Plan

UPRM Retreat
What is the Impact of this Year 2 Process?

- Thrust Area R3 Significantly Modified
 - Research on Massive Data Compression and Transmission Eliminated
 - Collaborative Work Environment Will Make Use of Available Technology
 - Reallocation of $500K in Year 2

- A New RPI Associate Director and Co-PI Appointed

- Additional $150K Reallocated for Year 3

- Clearer Alignment of Project Areas with Center Level Important Outcomes
 - Gaps In Year 2 Effort Addressed for Year 3
Year 2 vs. Year 3 Core Program Allocations Reflect Strategic Priorities

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>RI</td>
<td>728.6</td>
<td>637.5</td>
<td>1562.2</td>
<td>2193.7</td>
<td>530.5</td>
<td>723.6</td>
<td>777</td>
<td>859.3</td>
<td>385.7</td>
<td>365.3</td>
<td>937.9</td>
<td>942.9</td>
<td>4921.9</td>
</tr>
<tr>
<td>R2</td>
<td>1562.2</td>
<td>2193.7</td>
<td>530.5</td>
<td>723.6</td>
<td>777</td>
<td>859.3</td>
<td>385.7</td>
<td>365.3</td>
<td>937.9</td>
<td>942.9</td>
<td></td>
<td></td>
<td>5722.3</td>
</tr>
<tr>
<td>R3</td>
<td>530.5</td>
<td>723.6</td>
<td>777</td>
<td>859.3</td>
<td>385.7</td>
<td>365.3</td>
<td>937.9</td>
<td>942.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TestBEDS</td>
<td>777</td>
<td>859.3</td>
<td>385.7</td>
<td>365.3</td>
<td>937.9</td>
<td>942.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I-PLUS</td>
<td>385.7</td>
<td>365.3</td>
<td>937.9</td>
<td>942.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Education</td>
<td>937.9</td>
<td>942.9</td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td>4921.9</td>
<td>5722.3</td>
<td></td>
</tr>
</tbody>
</table>
Year 2 Accomplishments: Management and Infrastructure

- Moved into New Headquarters - Suite 302 Stearns Center
 - 3rd Floor Stearns Building
 - Part of University Strategy to Link With industry
- Created Project Management Tools
 - “Quilt” Project integration Chart
 - Project Spending Report
- Dr. Phil Cheney Joins Team
 - Recently Retired Senior Raytheon Executive
- Cemented Shadow Accounting and IT Support Systems
 - Full time people in place
- Maintained Weekly Management Meetings
 - All Partners Attend
 - 20 People Average Attendance
 - Maintains Communications and Shared Vision
The New CenSSIS Headquarters Will Poise CenSSIS For Future Growth
Outline of the CenSSIS Overview

- Vision and mission
- The CenSSIS team
- Research strategy and program
- Organization and management
- Education program
- Industrial collaboration
- Summary
The CenSSIS Education Program Works at all Levels

- Engineering Profession
- Continuing Ed.
- Grad. (Interdisc. Learning, SSI Topics)
- I/UROP (Jr./Sr. 3-Course SSI Conc., Undergrad. Modules)
- I/UROP (Fresh./Soph. Hi-Tech Tools&Toys)
- K-12 Outreach
- K-12
There is Active Student Involvement

- Motivated by ERC’s Vision and Mission
- Local Chapters and center-wide Council
- Services Provided by CenSSIS Staff Member
- Monthly Meetings and Field Trips
Student Poster Presentations at the January 2002 Research and Industrial Collaboration Conference
High Tech Tools and Toys Lab: A common theme for all CenSSIS partners
CenSSIS Course Developments

- **NU Undergraduate SSI Course:** Jan. 2002
 - Junior/Senior technical elective
 - Instructors: D. Brooks, C. DiMarzio
 - Overview of SSI
 - Work with real data
 - Pilot SolutionWare modules
 - Extend to Other Partners - Fall 2002

- **2 Distance Learning Graduate Courses**
 - **NU:** Tony Devaney ECE3300:
 - Special Topics—Inverse Problems (Videotapes to 4 sites + Boston)
 - **RPI:** Badri Roysam ECSE-6963:
 - Bio-medical Image Analysis (WEB)
How Does Diversity and Gender Equity Become Embedded Within CenSSIS?

- **Involve More PhD Level Women**
 - Mischa Kilmer (R1 - Tufts)
 - Sara Wadia-Fascetti (R1 - NU)
 - Anne Morgenthaler (R1 - Cons.)
 - Margaret Cheney (R1 - RPI)
 - Miriam Lesser (R3 - NU)
 - Sandra Pol (Educ - UPRM)
 - Carol Warner (Bio - NU)
 - Betty Salzberg (R3 - NU)
 - Karen Tompko (R3 - UCin)
 - Magda El-Shenawee (R1 - UAK)

 Anticipated involvement in Yr 3
 - Anne Cohen (Ocean - WHOI)
 - Jennifer Dy (R3 - NU)
 - Ingrid Padilla (Envir - UPRM)

- **Outreach to Under-Represented Groups**
 - Research Experiences for Undergraduates (REU)—8 Students
 - Morehouse College (2), Simmons College (1), Smith College (1), UPRM (3), Other (1)
 - CenSSIS Scholars
 - Year 3 Target 50 Freshman for Pipeline
 - Board of Directors “Buy-In”
 - UPRM PhD Bridge Program
 - K-12 Urban Programs

- **Overall Diversity Co-ordination**
 - Dr. Paula Leventman (NU) Chair
 - Prof. Lueny Morell (UPRM) Co-Chair
K-12 Outreach

CenSSIS Challenge

- 300+ Urban Students participated in their schools
- Second challenge was held May 2002
- Funded by Massachusetts Department of Education
- $50K/Year
Research Experiences for Teachers -- RET
Outline of the CenSSIS Overview

- Vision and mission
- The CenSSIS team
- Research strategy and program
- Organization and management
- Education program
- Industrial collaboration
- Summary
Year 2 Industry Support is $1.97 Million

- In-Kind: 35%
- Cash: 28%
- I-UROP: 8%
- Sponsored Research: 29%
The 5 Year CenSSIS Financial Plan Will Lead Towards Sustainability

<table>
<thead>
<tr>
<th>Source</th>
<th>Yr1</th>
<th>Yr2</th>
<th>Yr3</th>
<th>Yr4</th>
<th>Yr5</th>
<th>5 Yr Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>NSF</td>
<td>$2.6M</td>
<td>$3.1M</td>
<td>$3.5M</td>
<td>$3.5M</td>
<td>$3.5M</td>
<td>$16M</td>
</tr>
<tr>
<td>Univ</td>
<td>$3.0M</td>
<td>$3.1M</td>
<td>$2.7M</td>
<td>$2.8M</td>
<td>$2.8M</td>
<td>$14M</td>
</tr>
<tr>
<td>Ind/Gvt</td>
<td>$3.0M</td>
<td>$3.0M</td>
<td>$3.5M</td>
<td>$4.0M</td>
<td>$5.0M</td>
<td>$19M</td>
</tr>
<tr>
<td>Assoc Res</td>
<td>$1.5M</td>
<td>$1.5M</td>
<td>$1.5M</td>
<td>$2.0M</td>
<td>$2.0M</td>
<td>$9M</td>
</tr>
<tr>
<td>Total</td>
<td>$10M</td>
<td>$11M</td>
<td>$11M</td>
<td>$12M</td>
<td>$13M</td>
<td>$57M</td>
</tr>
</tbody>
</table>
Outline of the CenSSIS Overview

- Vision and mission
- The CenSSIS team
- Research strategy and program
- Organization and management
- Education program
- Industrial collaboration
- Summary
Our Long Range Mission - A Systemic Means to Attack Important Subsurface Problems

- Functional Deep Brain Imaging
- Early Tumor Diagnosis
- Real-Time Vascular Imaging
- 3D Subretinal Diagnosis
- Heart Attack Prevention
- Humanitarian Demining
- Underground Bunker Discovery
- 3D Pollution Assessment
- Real-time Roadbed Assessment

Our Long Range Mission - A Systemic Means to Attack Important Subsurface Problems
CenSSIS Has Addressed the NSF, IAB, & BOD SWOT Concerns To Date

- **Resources Spread Too Thinly**
 - Pruned the R3a and b areas--$500K per year

- **I-PLUS is not Clearly Defined**
 - A Shared Vision Has Been Achieved

- **Leaders don’t have Meaningful Authority**
 - Budgetary Authority Linked to Important Outcomes

- **Need more Rigor in parts of the Research Program**
 - 80+ peer-reviewed publications in journals over past two years
 - Sharpened focus on important strategic outcomes

- **Enhance the Distributed Education Program**
 - Graduate and Undergraduate Pilots Completed

- **Only NU has Initiated Industrial Partnerships**
 - Engineering Dean’s Challenge Established
Some Key Year 3 Research Plans

- **Unifying Framework Demonstrations**
 - EIT Medical Tools applied to Soil
 - Undersea Mosaicing Tools applied to Medical
 - Soil Modeling Tools applied to Tissue

- **ReUsable Solutionware Toolboxes**

- **Working testBEDs**

- **Multi-Sensor Solutions & Instruments to Help Refine the Developing I-PLUS Process**
 - 3D Fusion Microscope—Multi-cell Structure
 - Ultrasound + Optical Tomography—Coronary Artery Assessment
 - Acoustics + Induction--Buried Waste Assessment
CenSSIS is on Track in Year 2!

Our Shared Vision Ties The ERC Together