Condensate Atom Interferometers for Inertial Sensing Applications

Vanessa Leung, John Burke, Robert Horne, Robert Leonard, Jiraphat Tiamsuphat, Cass Sackett
Department of Physics, University of Virginia, Charlottesville, Virginia 22904

Project Summary
Developing ultracold phase-coherent matter wave interferometers with Bose-Einstein Condensates (BEC) as inertial sensors for:
- measuring gravity – oil resource development, geodesy, detecting underground structures
- gyroscopes - inertial navigation

Challenges and Significance
BEC interferometers as Gravity Sensors
- Atom fountains already among best gravity sensors
- Currently need large drop distances for atoms to free fall
- BEC are highly localized and can be coherently manipulated
- Possibility to develop a compact atom graviometer

BEC interferometers in Inertial Navigation Systems (INS)
- Current INS rely on optical gyroscopes that require periodic recalibration via GPS
- Cold atom gyroscopes provide a potentially highly accurate replacement solution

Technical Approach

1. Gravity Sensors with Bouncing Atoms:
 - If \(p = -h \phi \) before laser pulse, \(p \rightarrow + h \phi \) after (\(p \): atom momentum, \(k \): laser photon momentum)
 - Atom “bounces” off of light
 - Later, \(p \) will again reach \(-h\phi\) - repeat laser pulse
 - Theoretically \(~1000\) bounces possible giving total suspension time \(> 1 \) sec

Accomplishments up through Current Year
- Demonstration of a linear interferometer with BEC separation of 400 \(\mu \)m (Reference [1])
- Demonstration of atom bouncing for up to 100 reflections over 120 ms (Reference [2])
- Demonstration of a bouncing atom interferometer over 40 cycles
- 48 ms duration \(\rightarrow 81 \) total operations
- Phase shift \(\phi = (-18.011 \pm 0.001) \pi \)
- Was measured, an \(5 \times 10^{-6} \) accuracy. This gave a measurement of the local gravity acceleration \(g = 9.81 \) m/s\(^2\) (Reference [2])

Technology Transfer

- Industrial collaboration with Lynntech Inc. in the development of an Atom Trap Controller (ATC) precision electronic device
- In-house development of Atom Interferometric Rotation Sensor in a Harmonic Oscillator Trap (AIRSHOT) unit

To increase device compactness while maintaining sensitivity by restricting atoms to cyclic localized trajectories – bouncing, circular ring guiding

Overall Goal: To increase device compactness while maintaining sensitivity by restricting atoms to cyclic localized trajectories – bouncing, circular ring guiding

Process overview for BEC-interferometer implementation. Three major stages: (1) creation of ultra cold atoms in the form of a BEC (2) interferometry (3) phase measurement. Phase measurement results in high accuracy rotation sensing. Shaded boxes are processes managed by the ATC.