Layered Models Representing Breasts in Electrical Impedance Tomography

Rujuta Kulkarni, Greg Boverman, Tzu-Jen Kao, Gary Saulnier, David Isaacson and Jonathan Newell.
Rensselaer Polytechnic Institute, Troy, NY.

Approach:
The observed conductivities in compressed breasts in EIT are smaller than those seen previously in whole chest imaging. Looking at the anatomical breast model we could attribute this to a thin resistive skin layer present in breasts. To test this hypothesis and try to more accurately model breasts, we have developed a layered analytical forward model. Our layered model has three layers, thin top and bottom layers representing skin and a thicker middle layer representing breast tissue.

Mammography Geometry

Forward voltages in the first (skin), second (tissue) and third (skin) layers respectively

\(\gamma_1 \): Admittivity in the first and third layers
\(\gamma_2 \): Admittivity in the second layer

Comparison of the two models

<table>
<thead>
<tr>
<th>Current Pattern</th>
<th>Homogeneous Model</th>
<th>Layered Model</th>
</tr>
</thead>
</table>

Estimation of \(\gamma_{\text{skin}} \) and \(\gamma_{\text{body}} \) for clinical patient data

The calculation and fitting of \(V_{\text{ThreeLayer}} \) to the patient data \(V_{\text{Patient}} \) however needs estimation of \(\gamma_{\text{skin}} \) and \(\gamma_{\text{body}} \). The cost function to be optimized is:

\[
E(i) = \sum (V_{\text{Patient}}(i) - V_{\text{ThreeLayer}}(i))^2
\]

In the plot below we compare the estimated breast tissue and skin admittivity with those published in previous research [4], [5].

Future Work

Mammography
• Studying finite element noise in measured data and hence in error in the estimation of and
• Applying the layered model to the patient data and comparing the reconstructions with those obtained with the homogeneous model.

Hand-held Probe
• Study reconstructions from homogeneous hand-held probe for experimental tank data
• Apply the layered hand-held probe model to experimental data.

Publications Acknowledging NSF Support:

References

Contact Info:
Gary Saulnier, Ph. D. Professor of Electrical Engineering
E-mail: saulng@rpi.edu Rensselaer Polytechnic Institute
Web site: http://www.rpi.edu/~newelj/eit.html
110 Eighth St. Troy, NY 12180-3590, Phone: 518-276-6433

Acknowledgement:
This work is supported in part by CenSSIS, the Center for Subsurface Sensing and Imaging Systems, under the Engineering Research Centers Program of the National Science Foundation (Award Number ECCS-9986821) and by NIBIB, the National Institute of Biomedical Imaging and Bioengineering under Grant Number R01-EB000456-02.