Terahertz Applications for Detection of Explosives

Jian Chen, Yunqing Chen, Hongwei Zhao, X.-C. Zhang
Center for Terahertz Research, Rensselaer Polytechnic Institute, Troy, NY 12180

Abstract
In this project, we first used THz time domain spectroscopy (THz-TDS) to investigate explosives and establish a spectra database of these materials in the THz frequency range. The future THz imaging system will apply innovative pattern recognition and classification methods to distinguish explosives from non-explosive objects via these THz spectra.

Why should we care about THz waves?
Energy: objects at room temperature (300 K) emit thermal energy in this range (6 THz). Half of the cosmic background radiation from the Big Bang is in the THz region.
Signature: from GHz to THz frequencies, numerous organic molecules exhibit strong absorption and dispersion due to rotational and vibrational transitions. These transitions are specific to the targets and enable T-ray fingerprinting.
Safety: T-rays have low photon energies (one millions times weaker than an x-ray photon) and will not cause harmful photo-ionization in biological tissues.

Achievements
- Signatures of selected explosives and related compounds (ERCs) are identified in the THz band
- THz spectra of ERCs are calculated based on Density Functional Theory
- Good agreement between the calculated and measured spectra is achieved
- The results obtained from THz-TDS agree well with that from FTIR

Future Plan
For applications of THz system under condition close to real-life, there are several obstacles needed to be overcome: the long-distance propagation of a THz wave in the air, the size and shape of the samples, etc.

We have developed the following plans that will contribute to the sustainability of the research:
- Optimizing the performance of the THz time domain system (dynamic range, signal to noise ratio); building the compact THz system for long-distance real-time standoff detection (30m and greater).
- Building a field-deployable THz system capable of detecting materials of interest; creating an integrated instrument design for commercialization.

Acknowledgement
"This work was supported in part by Gordon-CenSSIS, the Bernard M. Gordon Center for Subsurface Sensing and Imaging Systems, under the Engineering Research Centers Program of the National Science Foundation (Award Number: EEC-9986821)."

This project fits level 3: Bio-Med.

Reference