One of the major challenges of biological research is to understand how proteins located on the cell surface transmit signals to the inside of the cell. Using the mouse as a model system our laboratory has studied one such protein, Qa-2 protein, which controls the rate of cell division of preimplantation embryos. Qa-2 is attached to the outer layer of the cell membrane by a glycosylphosphatidylinositol (GPI) linkage, which does not traverse the cell membrane. Thus, cell surface Qa-2 protein cannot initiate a signal on its own, but requires a partner molecule(s). In order to search for the partner molecule(s) for Qa-2 protein we have utilized two imaging techniques: immunofluorescence and scanning electron microscopy (SEM). Due to the paucity of material available from preimplantation embryos and due to the abundance of Qa-2 protein on T lymphocytes (T cells), we have used the latter for our studies. We tested the hypothesis that Qa-2 protein must be located in lipid rafts to initiate signaling by co-crosslinking Qa-2 to another molecule, CD4, located outside of the lipid rafts. As a control, we used co-crosslinking with CD8, known to be located in the lipid rafts. We used the above techniques to simultaneously label Qa-2 and lipid rafts before and after co-crosslinking. This basic research on T cells has the potential to be applied to preimplantation embryos to assist evaluation of embryo health after in vitro fertilization (IVF).

Materials and Methods

Crosslinking:

- **Before Qa-2 crosslinking:**
 - T cell
 - Anti-Qa-2
 - Anti-CD4/8

- **After Qa-2 crosslinking:**
 - Anti-Qa-2
 - Anti-CD4/8

Imaging of Qa-2 and Lipid Rafts:

- **Fluorescence:**
 - DIC
 - Qa-2
 - CD8

- **Electron Microscopy:**
 - DIC
 - Qa-2
 - CD8

State of the Art

- This poster presents techniques for the direct imaging of Qa-2 and lipid rafts on T cells.
- The Keck microscope allows State of the Art imaging using the DIC, epi-fluorescence and confocal modalities simultaneously.
- Visualization of single surface molecules on T cells using scanning electron microscopy (SEM) will provide important information about their location.

References

Contacts

Carmit Goldstein
goldstein.c@neu.edu
617-373-3973

Carol M. Warner
cmw@neu.edu
617-373-4036

"This work was supported in part by CenSSIS, the Bernard M. Gordon Center for Subsurface Sensing and Imaging Systems, under the Engineering Research Centers Program of the National Science Foundation (Award Number EEC-9988821)."