Center for Subsurface Sensing & Imaging Systems

Advanced Optical Sensing and Imaging Technologies

Badri Roysam (RPI) Lance Ladic (Siemens)
Charles DiMarzio (NU) Christoph Hergersberg (GE)
Irving Bigio (BU) Richard Levenson (CRI)

CenSSIS Research & Industrial Collaboration Conference 2006
Oct 4, 2007
Session Agenda

- Brief Introductory Speeches by Panelists
 - Badri Roysam (RPI)
 - Lance Ladic (Siemens)
 - Charles DiMarzio (NU)
 - Christoph Hergersberg (GE)
 - Irving Bigio (BU)
 - Richard Levenson (CRI)

- Panel Discussion
- Q & A
- Closing comments and panel summary
Trends in Contemporary Biology

- Reductionist → integrative
- High-throughput methodologies
- Leveraging bioinformatics
- **Complex Systems**
 - Composed of several components that interact
 - Key properties **“emerge”** from interactions among system components
- **Dynamic Systems**
 - Processes of interest evolve over **time and space**
 - Driven by interactions and **relationships** among system components

Knowledge Infrastructure, Capable Instrumentation

Modern Biology

High Throughput

High Content
Modern Optical Microscopy: A Multi-dimensional Measurement Tool

- The only way to acquire 3-D location and spatial structure
 - Intact, un-fragmented tissue

- Fluorescence multiplexing allows multiple structures and functional markers to be recorded in context
 - Structure-structure relationships
 - Molecular gradients and signaling

- Time-lapse allows dynamic processes to be recorded
 - Structural dynamics
 - Migration and Transport

- Combining dimensions allows us to record processes in their spatial & temporal context:
 - Structure-function relationships
 - Networks and Connectivity
 - System-level analysis
Current Excitement and Challenge

- Ever increasing numbers of structural and functional endpoints can be observed simultaneously in 3-D
 - Growing libraries of organic fluorophores & quantum dots
 - Multi- and hyper-spectral microscopes
 - Spectral unmixing tools
 - Support for complex fluorescence phenomena

- Easier to work with live cells
 - Sensitive, high-resolution, 3-D imaging
 - Minimally-damaging (MP, SHG), time-resolved imaging
 - Better instrumentation + better understanding of biology
 - Fusion of multiple microscopy modalities

- High-extent + high-resolution + high-throughput imaging
 - High-throughput tissue prep & imaging hardware

Continuing Challenges
- Fewer markers at a time
- Complex data analysis
Roysam Lab Activities

- **Retinal Image Analysis**
 - Registration, mosaicing, spatial referencing, multi-modality fusion (color, FA, OCT)

- **General-purpose automated change interpretation systems**
 - Structural and functional changes in retinas, developing embryos, tumors, stem-cells, neurons,..

- **5-D Microscopy Image Analysis**
 - Recent Applications:
 - Mapping Brain Tissue
 - Stem-Cell Niches
 - Mapping embryo development
 - Mitochondrial organization and dynamics
 - High-throughput approaches to Tissue Engineering
 - Tumor Biology
 - Cancer Pathology w/ Hyperspectral Data
 - Mapping gene transcription and regulation
 - Rapid prototyping systems for microscopy image analysis

Logos:
- Siemens
- CRI
- GE
- MGH
- mbf Bioscience
- Siemens
Retinal Changes

Diabetic Retinopathy

Vascular Changes

Functional Changes from 2-wavelength

570 nm

600 nm

Geographic Atrophy

J. Biomedical Optics (2005), IEEE-TBME (2005)

Macular Degeneration (FA)
Stem-Cell Microenvironments

Doetsch 2003, Temple 2002

GFAP+, LeX+, GFAP+, GFAP+, LeX+, negative

Distance to blood vessel (µm)
Frequency

R01 NS051531, 2006 → 2011
Mapping Embryo Development

Collaboration: Bill Mohler, University of Connecticut

H1-GFP C. elegans worm

Cell Tracking

4-D Spinning Disk Confocal Sequence, every 2 mins
Discussion Points

- **Emerging and continuing trends in the optical sensing and imaging industry**
 - Are there important new directions for academic research centers to consider?
 - Are there synergistic areas of opportunity between industry and academic research centers?

- **Mechanisms and models for effective collaboration between industry and academia**
 - What has worked, and what has not?
 - Are there new ones to consider?

- **Training future leaders**
 - What can we learn from corporate in-house leadership training programs?
 - What skills are critical for engineering leadership?
 - How can industry foster and leverage the Gordon Fellows program?
 - Are there “Challenge projects” in the optical sensing and imaging area that can effectively engage industrial and academic researchers?